Nature子刊:中科院景乃禾研究组发现组蛋白去乙酰化在小鼠神经诱导中的作用及调控机制

    4月23日,国际学术期刊Nature Communications在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所景乃禾研究组的最新研究成果“Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate”。该工作成功揭示了组蛋白去乙酰化在小鼠神经诱导过程中对多能干细胞神经命运决定的功能,并初步阐明了其中的分子机制。

 

    神经诱导是小鼠中枢神经系统发育的第一个阶段,伴随着原肠运动起始于胚胎 7.0 天左右。表观遗传修饰对于基因表达及细胞命运决定具有重要调控作用。但是,在小鼠神经诱导过程中,哪种表观遗传修饰参与其中并如何发挥调控功能,仍然是一个没有完全得到解答的科学问题。

 

    在该项研究中,博士研究生刘苹羽等在景乃禾研究员的指导下,利用小鼠胚胎干细胞体外神经分化模拟体内神经诱导过程,发现组蛋白去乙酰化修饰发生在神经命运起始阶段,且与上胚层细胞神经命运决定密切相关。在上胚层细胞阶段,通过组蛋白去乙酰化酶抑制剂阻断组蛋白去乙酰化酶活性,或者条件性敲除组蛋白去乙酰化酶1(HDAC1)都能够显著抑制神经分化而促进中内胚层分化。在神经分化的不同时间点,针对组蛋白乙酰化修饰的染色质免疫沉淀及测序(ChIP-sequence)结果表明,随着上胚层细胞神经分化的进行,组蛋白乙酰化修饰水平在一系列已知的神经命运抑制性基因位点逐渐降低,其中包括Nodal基因。在此基础上,HDAC1蛋白特异ChIP-sequence结果提示,HDAC1蛋白特异地结合在Nodal基因位点,通过去除其内含子区域的组蛋白乙酰化修饰,抑制Nodal基因的转录。进一步的功能实验证明,Nodal信号介导了组蛋白去乙酰化酶抑制剂及HDAC1缺失导致的神经命运决定的抑制。在小鼠7.0天的胚胎中,抑制前端上胚层细胞的组蛋白去乙酰化,可以激活Nodal基因表达,进而抑制神经命运决定。因此,这一研究揭示了组蛋白去乙酰化作为细胞内一种重要的表观遗传调控修饰,通过抑制Nodal信号而促进上胚层细胞的神经命运决定。这一发现丰富了我们对于小鼠早期神经发育过程中分子机制的理解,并且对于提高人的胚胎干细胞及诱导性多能干细胞的神经分化效率,及理解其深层次的分子机制具有一定的指导和借鉴意义。

 

    该项研究获得生化与细胞所李劲松研究员,计算生物学所韩敬东研究员等的大力支持与帮助。并得到中国科学院、国家科技部及国家自然科学基金委的经费支持。

 

    组蛋白去乙酰化调控Nodal基因表达参与神经命运决定模型

 

    原文链接:Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate

 

    原文摘要:Cell fate determination requires the cooperation between extrinsic signals and intrinsic molecules including transcription factors as well as epigenetic regulators. Nevertheless, how neural fate commitment is regulated by epigenetic modifications remains largely unclear. Here we show that transient histone deacetylation at epiblast stage promotes neural differentiation of mouse embryonic stem cells (mESCs). Histone deacetylase 1 (HDAC1) deficiency in mESCs partially phenocopies the inhibition of histone deacetylation in vitro, and displays reduced incorporation into neural tissues in chimeric mouse embryos in vivo. Mechanistic studies show that Nodal, which is repressed by histone deacetylation, is a direct target of HDAC1. Furthermore, the inhibition of histone deacetylation in the anterior explant of mouse embryos at E7.0 leads to Nodal activation and neural development repression. Thus, our study reveals an intrinsic mechanism that epigenetic histone deacetylation ensures neural fate commitment by restricting Nodal signalling in murine anterior epiblast ex vivo and mESC in vitro.

 

上一篇: Cell子刊:青岛能源所提出基于植物激素的微藻生物技术新观点
下一篇:PNAS:北极泥炭微生物种群可适应暖温度并持续制造甲烷
分享到: